## **Tutorial Notes 5**

1. Evaluate

$$\int_C (xy + y + z) \, \mathrm{d}s,$$

where  $C: (2t, t, 2-2t), 0 \le t \le 1$ .

**Solutions:** 

Let  $\gamma(t)=(2t,t,2-2t)$ . Then  $\dot{\gamma}=(2,1,-2)$  and  $|\dot{\gamma}(t)|=3$ . The integral is equal to  $\int_0^1 (2t\cdot t+t+2-2t)\cdot 3\,\mathrm{d}t = \frac{13}{2}.$ 

2. Evaluate

$$\int_C (-\sqrt{x^2 + z^2}) \, \mathrm{d}s,$$

where C:  $(0, a \cos t, a \sin t)$ ,  $0 \le t \le 2\pi$ .

**Solutions:** 

Let  $\gamma(t)=(0,a\cos t,a\sin t)$ . Then  $\dot{\gamma}(t)=(0,-a\sin t,a\cos t)$  and  $|\dot{\gamma}(t)|=a$ . The integral is equal to

$$\int_0^{2\pi} (-a|\sin t|) \cdot a \, dt = -2a^2 \int_0^{\pi} \sin t \, dt = -4a^2.$$

3. Find the area of the "winding wall" standing orthogonally on the curve  $y=x^2, 0 \le x \le 2$ , and beneath the surface  $f(x,y)=x+\sqrt{y}$ .

**Solutions:** 

The area is

$$\int_C f(x,y) \, \mathrm{d}s,$$

where C:  $y=x^2$ ,  $0 \le x \le 2$ . A parametrization of the curve is  $\gamma(x)=(x,x^2)$ . Then  $\dot{\gamma}(x)=(1,2x)$  and  $|\dot{\gamma}(x)|=\sqrt{1+4x^2}$ . Hence the integral is

$$\int_0^2 (x + \sqrt{x^2}) \cdot \sqrt{1 + 4x^2} \, \mathrm{d}x = \int_0^2 \sqrt{1 + 4x^2} \, \mathrm{d}(x^2) = \int_0^4 \sqrt{1 + 4u} \, \mathrm{d}u = \frac{17\sqrt{17} - 1}{6}.$$

4. Find the work done by the gradient of  $f(x,y) = (x+y)^2$  counterclockwise around the circle  $x^2 + y^2 = 4$  from (2,0) to itself.

**Solutions:** 

 $\nabla f(x,y) = (2(x+y),2(x+y))$ . Use the parametrization  $\gamma(t) = (2\cos t, 2\sin t)$ ,

1

$$0 \le t \le 2\pi$$
. Then  $\dot{\gamma}(t) = (-2\sin t, 2\cos t)$ . The work is 
$$\int_0^{2\pi} \left[ 2(2\cos t + 2\sin t)(-2\sin t) + 2(2\cos t + 2\sin t)(2\cos t) \right] dt$$
$$= 8 \int_0^{2\pi} (\cos^2 t - \sin^2 t) dt = 0.$$

## Remark 1

If the force F is the gradient of a function  $\phi$  (the force is called conservative), the work of it around a closed curve C is 0. Indeed, take a parametrization of the curve:  $\gamma(t)$ ,  $0 \le t \le 1$ , then the work is

$$\int_0^1 \nabla \phi(\gamma(t)) \dot{\gamma}(t) dt = \int_0^1 \phi(\gamma(t))' dt = 0.$$

5. Find the circulation and flux of the vector fields

$$F_1 = (x, y), \quad F_2 = (-y, x)$$

around and across the following curves:

- (a) the circle  $(\cos t, \sin t)$ ,  $0 \le t \le 2\pi$ ;
- (b) the ellipse  $(\cos t, 4\sin t), 0 \le t \le 2\pi$ .

## **Solutions:**

We use C(X,L) and F(X,L) to denote the circulation and flux of the vector field X around and across the curve L. Moreover, we let  $(u,v)^{\perp}=(-v,u)$ . Then we note that  $F_2=F_1^{\perp}$ . It follows that

$$C(F_2, L) = F(F_1, L)$$
 and  $F(F_2, L) = -C(F_1, L)$ .

Indeed,

$$C(F_2, L) = \int_L F_2 \cdot T \, ds = \int_L F_1^{\perp} \cdot T \, ds = -\int_L F_1 \cdot T^{\perp} \, ds$$
$$= \int_L F_1 \cdot n \, ds = F(F_1, L).$$

Similarly,

$$F(F_2, L) = \int_L F_2 \cdot n \, \mathrm{d}s = \int_L F_1^{\perp} \cdot n \, \mathrm{d}s = -\int_L F_1 \cdot n^{\perp} \, \mathrm{d}s$$
$$= -\int_L F_1 \cdot T \, \mathrm{d}s = -C(F_1, L).$$

Hence it suffices to calculate the circulation and flux of  $F_1$ . Denote the circle and ellipse by  $L_a$  and  $L_b$ .

(a) 
$$C(F_1, L_a) = \int_{L_a} F_1 \cdot T \, \mathrm{d}s = \int_{L_a} n \cdot T \, \mathrm{d}s = 0.$$
 
$$F(F_1, L_a) = \int_{L_a} F_1 \cdot n \, \mathrm{d}s = \int_{L_a} n \cdot n \, \mathrm{d}s = 2\pi.$$

(b) 
$$C(F_1, L_b) = \int_{L_b} (x \, dx + y \, dy) = \int_0^{2\pi} [\cos t(-\sin t) + 4\sin t(4\cos t)] \, dt = 0.$$
 
$$F(F_1, L_b) = \int_{L_b} (x \, dy - y \, dx) = \int_0^{2\pi} [\cos t(4\cos t) - 4\sin t(-\sin t)] \, dt = 8\pi.$$